What Works Best? Collecting Alumni Data with Multiple Technologies

Stephen R. Porter
Director of Institutional Research
Wesleyan University

Paul D. Umbach
Project Manager and Research Analyst
Center for Postsecondary Research
Indiana University

Abstract

We present results from an experiment in which alumni surveys were sent to one-year alumni of a large, public research university divided into four groups that differed by 1) whether they received a check-box or machine-scannable survey form and 2) whether they were told of a Web site where the survey could be filled out instead of using their paper form. We analyze the data to determine which of the four approaches was most effective in terms of response rates and response bias.

Introduction

Alumni survey data have grown increasingly important for higher education institutions. In Maryland, for example, the proportion of alumni expressing satisfaction with their alma mater is now used by the Legislature as a budget-based accountability measure (Office of Legislative Audits, 2001). The results from alumni surveys are also used in enrollment management (Claggett & Kerr, 1993; Haugen & Dallam, 1992) and for many years have been employed by advancement offices to inform fundraising and predict alumni donor behavior (Okunade, 1993; Taylor & Martin, 1995).

But as the use of student and alumni data increase, response rates to surveys are falling nationally (Dey, 1997; Steeh, 1981). Survey fatigue is most commonly cited, as public opinion polls are more popular with the media, and telemarketers increasingly use surveys to develop data for data mining research. Informal surveys of institutional research colleagues indicate that response rates for student and alumni surveys are also falling.

The result is that as response rates continue to shrink, educational researchers face increasing costs of surveying to counter survey non-response. Second and third mailings, for example, must be larger if the initial mailing elicits a weak response pool. Researchers must refine their data collection tools to counter this growing trend.

Unfortunately, research into improving alumni survey data remains limited (e.g. Boser, 1990; Cote et al., 1986; Grosset, 1995; Smith & Bers, 1987) and appears to have tapered off since the 1980’s. While many institutional researchers relied on general survey research results to inform their efforts (for example, the outstanding work by Dillman (2000)), most of this research was based on surveys of the general population. Yet alumni are certainly their own special subpopulation. For example, while one of the most effective ways to increase response rates is to include a $1 bill with survey forms (Church 1993; Warriner et al., 1996), such “wasteful” spending would probably produce a backlash amongst alumni on whom it was used.

In an effort to fill the gap in the literature on increasing alumni survey response rates, in the summer of 2000 we conducted an experiment with an alumni survey at a large, public research university by dividing the sample into four groups and alternating the survey method. Alumni received either a regular check-box survey or a machine-scannable survey form, and some alumni were informed of the possibility of filling out the survey on a Web site. These four groups allow us to test the possibility that machine-scannable forms may suppress response rates, a still contentious point in the literature (Dillman and Miller 1998), and to also understand the impact of allowing alumni to answer via the Internet. We then analyze the results in terms of response rates and response bias.
One of the most popular technologies for higher education survey data collection is optical mark recognition (OMR) forms, the ubiquitous “bubble” or “Scantron” survey forms. These surveys specifically define areas that a machine can read, and determine the presence or absence of a mark in an area. (Note that these differ from the new optical character recognition (OCR) forms, which can appear like a regular paper survey. Optical scanners read the form and can determine not only the presence or absence of marks, but also can read written characters. Given the investments many institutions have in OMR equipment and forms, the impact of OMR forms on response rates is still a very relevant issue.)

The OMR surveys allow fast processing of individual surveys and can also save money on data entry, which can then allow additional mailings through cost savings. The main alternative to OMR surveys are the standard paper surveys with check-boxes and fill-in-the-blanks. The drawback to these surveys is that the data must be hand-entered, while OMR surveys can be read by a machine that will produce a finished dataset.

One possible disadvantage with OMR surveys is that these may suppress response rates. In their review of 44 OMR surveys Dillman and Miller (1998) found mixed support for this hypothesis. Suppression of response rates can occur for several reasons. The OMR surveys are often combined with other cost-cutting measures (e.g., no followup), so their low response rates may simply be an artifact of other choices about survey administration (Dillman, 2000 p.418). Generally, OMR forms have one standard ink color that provides limited visual appeal (Dillman, 2000, p.418), creating a disincentive for response. And our own experience and conversations with students indicate that these forms are also more tedious to fill out. Rather than simply reading through the survey and checking off or circling responses, the respondent must carefully fill in a circle or “bubble” for each question.

Besides response rates there may be additional data quality issues with OMR surveys. First, given the effort of filling out OMR surveys, item non-response may be higher than standard check-box surveys, especially when the respondent is confronted with large banks of similar questions. Second, there may be potential response bias among subgroups of respondents, as the “technical” appearance of OMR surveys may have a differential effect across demographic groups or those respondents less comfortable with technology.

Web surveys

Conducting Internet surveys has become increasingly popular, as Web surveys have no printing costs, can be conducted in a far shorter time span than mail surveys, and because Web surveys collect the data as entered by the respondent and produce an analyzable dataset. There are a large variety of issues involving Web surveys, such as response bias and cost effectiveness (for an excellent review see Couper, 2000), but one area has been little investigated: how successful are Web surveys that are not conducted by e-mail?

Usually Web surveys are conducted via e-mail, in which an e-mail note is sent to each respondent with an embedded link to the survey Web site (or alternatively, respondents at their computer reading e-mail copy the URL of the Web site into their browser to access the survey). The barrier to response is quite low with this approach, as the respondent simply clicks a few buttons to begin the survey. The problem, of course, is the researcher must have valid e-mail addresses. For enrolled students or faculty and staff, these can be quite easy to procure. For alumni, however, valid e-mail addresses can be difficult to obtain, and are almost impossible to obtain for a random sample of alumni (generally development offices only have e-mail addresses for alumni who volunteer them, or who have signed up for lifetime alumni e-mail addresses).

The only alternative for using Web surveys with alumni is to send them the URL of the Web site in a letter. The barrier to response, however, is now quite substantial, as the alumnus must go to the computer and turn it on before typing the URL into the Web browser to access the survey. Research indicates that this may be an ineffective way of administering Web surveys.

In three different paper surveys sent to enrolled students who were also offered the option to respond via the Web, the proportion choosing to use the Web survey varied from 7%-15% (Tomsic et al., 2000). Such small proportions suggest that such Web surveys may not be an effective method for collecting survey data from alumni.

Sample and Design

We employed an experimental design in a survey of one-year alumni from a large, public research university to understand differences between response rates using an optical mark recognition form, a standard check-box paper form, and a Web form. The survey itself contained more than 80 questions and was four pages long. The questions covered such topic areas as current employment status, satisfaction with various aspects of the institution, and self-assessed growth of skills and abilities.

All 4,952 bachelor’s degree recipients for fiscal year 1999 were randomly assigned to four different groups of survey administration types – OMR form with a Web option, OMR form with no Web option, check-box form with a Web option, and check-box form with no Web option (see Table 1). Only the two OMR groups received machine-readable paper forms, but in all of their mailings the Web option group was given an Internet URL for the Web version of the survey, giving them the opportunity to complete the survey online. The check-box groups were mailed only the standard check-box paper forms, with the
This experimental grouping allows us to compare the impact of OMR surveys on response rates, as well as test how effective Web surveys can be in collecting information from alumni via mail notification.

Procedure

We employed the Dillman (2000) method of mail surveying in an effort to obtain high response rates. Dillman’s method involves multiple contacts with respondents when doing large-scale mail surveys, using a pre-notification contact and multiple survey mailings and reminder contacts.

During the second week in June 2000, a pre-notification postcard was mailed to all fiscal year 1999 graduates. The postcard explained the forthcoming survey and the importance of their participation. We included a Web site address to the two Web option groups and offered them the opportunity to immediately fill the survey out online.

Approximately two weeks later the survey was mailed to the entire sample. Included in the mailing were a self-addressed, stamped envelope and a cover letter explaining the purpose of the survey and the importance of their participation. Half of the group received the OMR survey, and the other half the check-box survey. Again, we included a Web site address in the letters sent to the two Web groups.

Two weeks after the first survey mailing, we sent a final reminder postcard. The postcard encouraged students to fill out the survey if they had not already done so. Included in all of the postcards was the Web address of the online survey telling them this was their last chance to participate.

Because of the complicated and costly nature of the survey, we were not able to employ some of the techniques suggested by Dillman to increase response rates. We did not personalize the letters as Dillman suggests nor did we have someone actually sign the letters. We were also unable to secure the signature of the president, so the provost’s scanned signature was included on the letters.

Analysis

Our analysis of the data focuses on three areas:

- How do the response rates vary for each administration group?
- How does the survey methodology affect the respondent pool?
- How does the survey methodology affect question responses?

Response rates

Table 2 presents the number of respondents and response rates for each of the four experimental groups, the combined response rates for check-box versus OMR surveys and Web versus no Web option, and the total response rate. Overall 33.9% of the alumni responded to the survey during the three-month period. Examination of the response rates for the four groups reveals that the check-box group who was offered the Web option had the highest response rate (35.7%), followed by the check-box group with no Web option (34.5%), the OMR group offered a Web option (33.0%) and finally, the OMR group given no Web option (31.1%).

Table 2: Response Rate by Survey Method Type

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>Group offered option to respond via the Web?</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Check-box</td>
<td>386</td>
<td>406</td>
</tr>
<tr>
<td>Respondent N</td>
<td>734</td>
<td>732</td>
</tr>
<tr>
<td>Sample N</td>
<td>1,120</td>
<td>1,138</td>
</tr>
<tr>
<td>Response rate</td>
<td>34.5%</td>
<td>35.7%</td>
</tr>
<tr>
<td>OMR</td>
<td>366</td>
<td>374</td>
</tr>
<tr>
<td>Respondent N</td>
<td>766</td>
<td>760</td>
</tr>
<tr>
<td>Sample N</td>
<td>1,132</td>
<td>1,134</td>
</tr>
<tr>
<td>Response rate</td>
<td>33.2%</td>
<td>33.0%</td>
</tr>
<tr>
<td>Total</td>
<td>752</td>
<td>780</td>
</tr>
<tr>
<td>Respondent N</td>
<td>1,500</td>
<td>1,492</td>
</tr>
<tr>
<td>Sample N</td>
<td>2,262</td>
<td>2,272</td>
</tr>
<tr>
<td>Response rate</td>
<td>33.4%</td>
<td>34.3%</td>
</tr>
</tbody>
</table>
Web option (32.3%). These response rates differ as expected, with the check-box/Web option group having the highest response rate, but the differences are not statistically significant.

A comparison of the combined response rates also reveals expected differences in response rates. Combining the two Web option / no Web option groups, the response rates differ as expected, with the response rate for the total Web option group, 34.3%, slightly higher than the response rate for the no Web option group, 33.4%. This difference is not statistically significant.

Combining the two check-box groups and two OMR groups, we can see that the response rates of the two combined groups differ by almost 2.4 percentage points (35.1% versus 32.7%, see the far right column in Table 2). This difference is statistically significant with a one-tailed test (p<.043). The OMR form does appear to suppress response in comparison to the check-box form, although the substantive difference is not very large.

From a comparison of response rates it seems that the machine-scannable forms tended to suppress response rates, while the ability to respond via the Web had no significant impact. Where exactly in the survey administration did this effect occur? Dillman (2000) asserts that much of the literature finding differential responses rates for OMR and check-box surveys is because of limited survey administration, and that repeated contacts with respondents should minimize these differential response rates. Figure 1 presents the cumulative response rates for the two combined experimental groups, those respondents receiving a check-box survey and those receiving an OMR survey. As can be seen, the 2.4 percentage point difference in response rates occurs in the latter part of the survey administration, not at the beginning. In fact, the response rates for the two groups are indistinguishable until after the second mailing, which occurred after the fourth week.

We can offer an alternative explanation to Dillman’s scenario of respondents’ reactions to OMR surveys. With any survey the willingness of people in the sample to participate will vary. During the beginning of the survey administration people who are very willing to participate will tend to respond regardless of the type of survey. As the number of survey contacts grows, people who are less willing to participate are convinced by the multiple contacts to participate, but just barely. Because many of these people are “on the knife’s edge” in terms of commitment to participate, any aspect of the survey methodology that might affect response will tend to have an impact. Thus, the impact of OMR surveys on survey response will occur not at the beginning of a survey, but after the second or third contacts.

If this is indeed the case, the conclusion for institutional researchers on a budget is that the use of OMR forms will not have an impact if a planned survey will only consist of one mailing. But if the researcher plans a full tailored design survey administration with multiple contacts, based on our results, a check-box survey would yield a higher response rate.

Web option

Disappointingly, very few alumni chose to complete the Web survey. Of the 1,532 respondents in our sample, only 2% (36) chose to respond via the Internet. This proportion is much smaller than those reported by Tomsic et al. (2000). Unlike enrolled students, who generally have easy access to computers on campus, alumni may not have easy access to a computer, and thus our proportion is much smaller than those reported by Tomsic et al. for their enrolled student surveys. Also, the significant amount of effort required of the respondent when the URL is included in a letter (rather than embedded in an e-mail) may prevent them from responding via the Web.

Make-up of respondents

Although the preceding analysis only found significantly different response rates for the check-box versus OMR survey groups, even if the experimental groups have similar response rates, the make-up of the respondent pools could differ. Although we are most often concerned about response rates when discussing surveys, a related but often ignored phenomenon is response bias. Respondent pools can differ from the original sample both in terms of demographics as well as attitudes. In this case we are interested if there is response bias between the experimental groups. In other words, do certain types of survey methods result in respondent pools that are over- or under-represented in terms of race, gender, or some other respondent attribute?

Table 3 presents the results of our analysis of response bias by survey group type. The first four columns of numbers present the proportions or mean values for the attributes listed on the left: proportion female, Asian-American, African-American, and Latino, mean age and
cumulative grade point average, and proportion with a "hard" major. We derived hard major by collapsing Biglan’s (1973) disciplinary categories into two groups – hard and soft. Hard majors include disciplines from life sciences, physical sciences, agriculture, mathematics and engineering. Soft majors include disciplines from the arts, humanities, education, business and the social sciences. Two-way ANOVAs testing for significant differences in these variables across the main grouping of check-box/OMB and Web/no Web option (i.e., main effects) as well as for significant differences among the four experimental groups (i.e., interaction effects) yielded only one statistically significant difference, the proportion of females in the respondent pools for the four experimental groups.

The proportions for each group do not differ between the survey administrations in any expected fashion. For example, for respondents receiving an OMR survey, the Web option group had a higher proportion of females than the no Web option group. But for respondents receiving a check-box survey, the proportion of females was higher for the no Web option group than the Web option group. It is likely that this is simply a false positive: with a p-level of .05, we would expect at least one out of 20 statistical tests to yield a significant result, when in the population there is no difference. In the table we conducted 21 different statistical tests looking for differences in the respondent pools (seven for the main effects of check-box versus OMR across the seven alumni groups types, seven for the main effects of Web option versus no Web option, and seven for the interaction effects), so one statistically significant result is not surprising. The conclusion is that the type of survey methodology used does not affect the makeup of the respondent pool.

Question responses

Although the method of administration does not appear to affect who answers a survey, it may have an impact on what they decide to say. Or, the respondent pools may appear similar in terms of demographics, but differ in terms of the attitudes respondents have.

We test for these possibilities in two ways by analyzing responses to 69 different questions on the survey. These questions focus on six different areas, with some examples listed for each area:

- General (e.g., questions covering employment and residence)
- Satisfaction with aspects of the institution (e.g., proud to have graduated from institution, institution has strong reputation)
- Skills and abilities – importance for success (e.g., writing effectively, thinking creatively)
- Skills and abilities – enhanced by institution
- Institutional assistance – obtaining job (e.g., course work, Career Center)
- Institutional assistance – acceptance to graduate school

Given that the previous analyses found only a significant difference between check-box and OMR surveys, we only test for main effects; that is, differences between the check-box and OMR survey groups.

We test for two different possibilities. First, do responses to each question differ by type of survey administered? Second, does the probability of a respondent not answering a question differ by type of survey administration?

Table 4 lists the significant differences found between the two survey groups when comparing question answers. Using each of the 69 question responses as the dependent variable, and including several control variables in an ordinal or dichotomous logistic regression equation, depending on the structure of the dependent variable, we tested for differences in responses between the two survey groups. The control variables were gender, ethnicity, age, transfer student status, cumulative GPA, time to degree, and “hard” major. We included two dummy variables to test for differences in survey administration, one indicating the respondent had received a check-box survey, and the other indicating the respondent were notified of the Web option for filling out the survey.

The table lists the six sections of questions from the survey, and if a significant difference in question answers was found, the question wording is presented. In addition, the direction of the effect of the survey method is given, as well as the p-level of the significant finding.

Altogether 69 differences were tested, and given a .10 error level we would expect to find about 7 erroneous statistically significant results. We found 5 statistically significant results, so the results presented in Table 4 conform to the view that there were no significant differences in question response between survey groups. What is striking, is the directions of impact are fairly consistent. If these significant results were simply the result of random
error, we would expect to find an equal proportion of positive and negative findings. Because this is not the case, the implication is that perhaps there are some significant differences between the two groups.

We can see that the impact of the check-box method versus the OMR method is negative; that is, respondents in the check-box experimental groups tended to, on average, be less satisfied with aspects of the institution, and give lower ratings on skills assessments. This may be because of the differential response rates between the two groups. If the probability of survey response is related to alumni satisfaction (Schiltz, 1988), and the ease of use of check-box surveys encourages response, then check-box surveys may have a greater chance of inducing less satisfied alumni to respond.

Table 5 presents the mean item non-response for the six groups of questions on the survey for the check-box and OMR survey groups. For each respondent, we counted the number of questions that were left blank, and then took the average of this number for each of the six groups of questions on the survey. As can be seen, for five out of the six groups the OMR survey group had a larger number of blank questions than the check-box group. The differences were largest for the skills assessment questions; on average, respondents in the OMR groups left almost twice as many questions blank as the check-box group. Interestingly, the skills assessment questions are one of the largest battery of questions on the survey. We would expect item non-response to be largest here, as some OMR respondents confronted with filling out numerous circles in this section simply begin to pick and choose which questions to answer, or simply skip the section altogether.

The results in Table 5 may provide an explanation for the consistently negative direction found in Table 4. If respondents with negative attitudes towards the institution are less likely to want to spend time on a survey, in an OMR survey situation they would also be more likely to leave questions blank. If the same type of respondents answered these questions on the check-box survey, then the overall results for the check-box group would be more negative than the OMR group. If so, the use of OMR surveys may skew results in a positive direction compared with check-box surveys.

Conclusion

In our survey experiment on one-year alumni, we found that OMR forms such as Scantron tend to suppress response rates. In our sample the difference in response rates between the check-box and OMR groups was 2.4%. Interestingly, this entire difference occurred only after the second mailing. For institutional researchers on a budget, this finding implies that OMR surveys can be used in single mailing surveys without having an impact on response rates. For more standard Dillman-like multiple contact survey administrations, the researcher should consider the advantages and disadvantages of the OMR survey when choosing a survey instrument.

Table 5:
Item Non-Response for Check-Box and OMR Survey Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Number of Items</th>
<th>Check-box</th>
<th>OMR</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>General questions</td>
<td>11</td>
<td>2.5</td>
<td>3.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Satisfaction with aspects of institution</td>
<td>10</td>
<td>1.6</td>
<td>2.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Skills and abilities - importance for success</td>
<td>13</td>
<td>1.4</td>
<td>2.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Skills and abilities - enhanced by institution</td>
<td>13</td>
<td>1.2</td>
<td>2.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Institutional assistance - obtaining job</td>
<td>11</td>
<td>5.2</td>
<td>5.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Institutional assistance - acceptance to graduate school</td>
<td>11</td>
<td>8.5</td>
<td>8.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>20.4</td>
<td>24.3</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Note: Means have been rounded; \(p < .01 \), \(p < .05 \); significance tested with two-way ANOVA.
The opportunity to answer the survey via the Web when notified via snail mail did not appear very attractive to the alumni in our study. Only 2% of respondents chose to respond this way, indicating that collecting alumni data in this manner may not be very effective. This low response rate may have been in part because of the survey length and the amount of time required to fill it out on a computer; in addition, many alumni may not have had Internet access at home, where they received the survey mailing. Another explanation is filling out the Web survey was too complicated, as it required turning on a computer, opening a browser and typing the survey URL address in the browser. Alumni surveys conducted via the Web should be much more successful if alumni are e-mailed directly with a survey link embedded in the message.

We found no differences in respondent pools for the four experimental groups, indicating that non-response bias for subgroups is generally not a problem when using OMR surveys. There was some evidence of possible negative response bias in question answers, with respondents receiving a check-box survey tending to give more negative answers than respondents receiving an OMR survey. However, our results here are inconclusive, and further research is needed in this area.

Finally, we did find significantly higher item non-response for the OMR survey groups, especially for batteries of questions similar in appearance. This is of some concern, as many assessment programs use OMR surveys with batteries of questions such as the skills assessment questions used in our study.

References

THE AIR PROFESSIONAL FILE—1978-2004

A list of titles for the issues printed to date follows. Most issues are “out of print,” but microfiche or photocopies are available through ERIC. Photocopies are also available from the AIR Executive Office, 222 Stone Building, Florida State University, Tallahassee, FL 32306-4462, $3.00 each, prepaid, which covers the costs of postage and handling. Please do not contact the editor for reprints of previously published Professional File issues.

Organizing for Institutional Research (J.W. Ridge; 6 pp; No. 1)

Dealing with Information Systems: The Institutional Researcher’s Problems and Prospects (L.E. Saunders; 4 pp; No. 2)

Formula Budgeting and the Financing of Public Higher Education: Panacea or Nemesis for the 1980s? (F.M. Gross; 6 pp; No. 3)

Methodology and Limitations of Ohio Enrollment Projections (G.A. Kraetsch; 8 pp; No. 4)

Conducting Data Exchange Programs (A.M. Bloom & J.A. Montgomery; 4 pp; No. 5)

Choosing a Computer Language for Institutional Research (D. Strenglein; 4 pp; No. 6)

Cost Studies in Higher Education (S.R. Hample; 4 pp; No. 7)

Institutional Research and External Agency Reporting Responsibility (G. Davis; 4 pp; No. 8)

Coping with Curricular Change in Academe (G.S. Melchiori; 4 pp; No. 9)

Computing and Office Automation—Changing Variables (E.M. Staman; 6 pp; No. 10)

Resource Allocation in U.K. Universities (B.J.R. Taylor; 8 pp; No. 11)

Career Development in Institutional Research (M.D. Johnson; 5 pp; No. 12)

The Institutional Research Director: Professional Development and Career Path (W.P. Fenstemacher; 6 pp; No. 13)

Effective Use of Models in the Decision Process: Theory Grounded in Three Case Studies (M. Mayo & R.E. Kallio; 8 pp; No. 15)

Triage and the Art of Institutional Research (D.M. Norris; 6 pp; No. 16)

The Use of Computational Diagrams and Nomograms in Higher Education (R.K. Brandenburg & W.A. Simpson; 8 pp; No. 17)

Decision Support Systems for Academic Administration (L.J. Moore & A.G. Greenwood; 9 pp; No. 18)

The Cost Basis for Resource Allocation for Sandwich Courses (B.J.R. Taylor; 7 pp; No. 19)

Assessing Faculty Salary Equity (C.A. Allard; 7 pp; No. 20)

Effective Writing: Go Tell It on the Mountain (C.W. Ruggiero, C.F. Elton, C.J. Mullins & J.G. Smoot; 7 pp; No. 21)

Preparing for Self-Study (F.C. Johnson & M.E. Christal; 7 pp; No. 22)

Concepts of Cost and Cost Analysis for Higher Education (E.M. Staman; 6 pp; No. 23)

The Calculation and Presentation of Management Information from Comparative Budget Analysis (B.J.R. Taylor; 10 pp; No. 24)

The Anatomy of an Academic Program Review (R.L. Harpel; 6 pp; No. 25)

The Role of Program Review in Strategic Planning (R.J. Barak; 7 pp; No. 26)

The Adult Learner: Four Aspects (Ed. J.A. Lucas; 7 pp; No. 27)

Building a Student Flow Model (W.A. Simpson; 7 pp; No. 28)

Evaluating Remedial Education Programs (T.H. Bers; 8 pp; No. 29)

Developing a Faculty Information System at Carnegie Mellon University (D.L. Gibson & C. Golden; 7 pp; No. 30)

Designing an Information Center: An Analysis of Markets and Delivery Systems (R. Matross; 7 pp; No. 31)

Linking Learning Style Theory with Retention Research: The TRAILS Project (D.H. Kalsbeek; 7 pp; No. 32)

Data Integrity: Why Aren’t the Data Accurate? (F.J. Gose; 7 pp; No. 33)

Electronic Mail and Networks: New Tools for Institutional Research and University Planning (D.A. Updegrove, J.A. Muffo & J.A. Dunn, Jr.; 7 pp; No. 34)

Case Studies as a Supplement to Quantitative Research: Evaluation of an Intervention Program for High Risk Students (M. Peglow-Hoch & R.D. Waller; 8 pp; No. 35)

Interpreting and Presenting Data to Management (C.A. Clagett; 5 pp; No. 36)

The Role of Institutional Research in Implementing Institutional Effectiveness or Outcomes Assessment (J.O. Nichols; 6 pp; No. 37)

Phenomenological Interviewing in the Conduct of Institutional Research: An Argument and an Illustration (L.C. Attinasi, Jr.; 8 pp; No. 38)

Beginning to Understand Why Older Students Drop Out of College (C. Farabaugh-Dorkins; 12 pp; No. 39)

A Responsive High School Feedback System (P.B. Duby; 8 pp; No. 40)

Listening to Your Alumni: One Way to Assess Academic Outcomes (J. Pettit; 12 pp; No. 41)

Accountability in Continuing Education Measuring Noncredit Student Outcomes (C.A. Clagett & D.D. McConochie; 6 pp; No. 42)

Focus Group Interviews: Applications for Institutional Research (D.L. Brodigan; 6 pp; No. 43)

An Interactive Model for Studying Student Retention (R.H. Glover & J. Wilcox; 12 pp; No. 44)

Increasing Admitted Student Yield Using a Political Targeting Model and Discriminant Analysis: An Institutional Research Admissions Partnership (R.F. Urban; 6 pp; No. 45)

Using Total Quality to Better Manage an Institutional Research Office (M.A. Heverly; 6 pp; No. 46)

Critique of a Method For Surveying Employers (T. Banta, R.H. Phillippi & W. Lyons; 8 pp; No. 47)

Plan-Do-Check-Act and the Management of Institutional Research (G.W. McLaughlin & J.K. Snyder; 10 pp; No. 48)

Strategic Planning and Organizational Change: Implications for Institutional Researchers (K.A. Corak & D.P. Wharton; 10 pp; No. 49)

Academic and Librarian Faculty: Birds of a Different Feather in Compensation Policy? (M.E. Zeglen & E.J. Schmidt; 10 pp; No. 50)

Setting Up a Key Success Index Report: A How-To Manual (M.M. Sapp; 8 pp; No. 51)

Involving Faculty in the Assessment of General Education: A Case Study (D.G. Underwood & R.H. Nowaczyk; 6 pp; No. 52)
THE AIR PROFESSIONAL FILE—1978-2003

Using a Total Quality Management Team to Improve Student Information Publications (J.L. Frost & G.L. Beach; 8 pp; No. 53)

Evaluating the College Mission through Assessing Institutional Outcomes (C.J. Myers & P.J. Silvers; 9 pp; No. 54)

Community College Students’ Persistence and Goal Attainment: A Five-year Longitudinal Study (K.A. Conklin; 9 pp; No. 55)

What Does an Academic Department Chairperson Need to Know Anyway? (M.K. Kinnick; 11 pp; No. 56)

Cost of Living and Taxation Adjustments in Salary Comparisons (M.E. Zeglin & G. Tesfagiorgis; 14 pp; No. 57)

The Virtual Office: An Organizational Paradigm for Institutional Research in the 90’s (R. Matross; 8 pp; No. 58)

Student Satisfaction Surveys: Measurement and Utilization Issues (L. Sanders & S. Chan; 9 pp; No. 59)

The Error Of Our Ways: Using TQM Tactics to Combat Institutional Issues Research Bloopers (M.E. Zeglin; 18 pp; No. 60)

How Enrollment Ends: Analyzing the Correlates of Student Graduation, Transfer, and Dropout with a Competing Risks Model (S.L. Ronco; 14 pp; No. 61)

Setting a Census Date to Optimize Enrollment, Retention, and Tuition Revenue Projects (V. Borden, K. Burton, S. Keucher, F. Vossburg-Conaway; 12 pp; No. 62)

Alternative Methods For Validating Admissions and Course Placement Criteria (J. Noble & R. Sawyer; 12 pp; No. 63)

Admissions Standards for Undergraduate Transfer Students: A Policy Analysis (J. Saue & S. Long; 12 pp; No. 64)

IR for IR—Indispensable Resources for Institutional Researchers: An Analysis of AIR Publications Topics Since 1974 (J. Volkwein & V. Volkwein; 12 pp; No. 65)

Progress Made on a Plan to Integrate Planning, Budgeting, Assessment and Quality Principles to Achieve Institutional Improvement (S. Griffith, S. Day, J. Scott, R. Smallwood; 12 pp; No. 66)

The Local Economic Impact of Higher Education: An Overview of Methods and Practice (K. Stokes & P. Coomes; 16 pp; No. 67)

Developmental Education Outcomes at Minnesota Community Colleges (C. Schoenecker, J. Evens & L. Bollman; 16 pp; No. 68)

Studying Faculty Flows Using an Interactive Spreadsheet Model (W. Kelly; 16 pp; No. 69)

Using the National Datasets for Faculty Studies (J. Milam; 20 pp; No. 70)

Tracking Institutional leavers: An Application (S. DesJardins, H. Pontiff; 14 pp; No. 71)

Predicting freshman success Based on High School Record and Other Measures (D. Eno, G.W. McLaughlin, P. Sheldon & P. Brozovsky; 12 pp; No. 72)

A New Focus for Institutional Researchers: Developing and Using a Student Decision Support System (J. Frost, M. Wang & M. Dalrymple; 12 pp; No. 73)

The Role of Academic Process in Student Achievement: An Application of Structural Equations Modeling and Cluster Analysis to Community College Longitudinal Data1 (K. Boughan, 21 pp; No. 74)

A Collaborative Role for Industry Assessing Student Learning (F. McMartin; 12 pp; No. 75)

Efficiency and Effectiveness in Graduate Education: A Case Analysis (M. Kehrhahn, N.L. Travers & B.G. Sheckley; No. 76)

ABCs of Higher Education—Getting Back to the Basics: An Activity-Based Costing Approach to Planning and Financial Decision Making (K. S. Cox, L. G. Smith & R.G. Downey; 12 pp; No. 77)

Using Predictive Modeling to Target Student Recruitment: Theory and Practice (E. Thomas, G. Reznik & W. Dawes; 12 pp; No. 78)

Assessing the Impact of Curricular and Instructional Reform - A Model for Examining Gateway Courses1 (S.J. Andrade; 16 pp; No. 79)

Surviving and Benefitting from an Institutional Research Program Review (W.E. Knight; 7 pp; No. 80)

Including Transfer-Out Behavior in Retention Models: Using NSC EnrollmentSearch Data (S.R. Porter; 16 pp; No. 82)

Assessing the Performance of Public Research Universities Using NSF/NCES Data and Data Envelopment Analysis Technique (H. Zheng & A. Stewart; 24 pp; No. 83)

Finding the ‘Start Line’ with an Institutional Effectiveness Inventory1 (S. Ronco & S. Brown; 12 pp; No. 84)

Finding a Comprehensive Model of Influences Upon Time to Bachelor’s Degree Attainment (W. Knight; 18 pp; No. 85)

Using Logistic Regression to Guide Enrollment Management at a Public Regional University (D. Berge & D. Hendel; 14 pp; No. 86)

A Micro Economic Model to Assess the Economic Impact of Universities: A Case Example (R. Parsons & A. Griffiths; 24 pp; No. 87)

Methodology for Developing an Institutional Data Warehouse (D. Wierschem, R. McBroom & J. McMillen; 12 pp; No. 88)

The Role of Institutional Research in Space Planning (C.E. Watt, B.A. Johnston. R.E. Chrestman & T.B. Higierd; 10 pp; No. 89)
The AIR Professional File is intended as a presentation of papers which synthesize and interpret issues, operations, and research of interest in the field of institutional research. Authors are responsible for material presented. The File is published by the Association for Institutional Research.

Authors interested in having their manuscripts considered for the Professional File are encouraged to send four copies of each manuscript to the editor, Dr. Gerald McLaughlin. Manuscripts are accepted any time of the year as long as they are not under consideration at another journal or similar publication. The suggested maximum length of a manuscript is 5,000 words (approximately 20 double-spaced pages), including tables, charts and references. Please follow the style guidelines of the Publications Manual of the American Psychological Association, 4th Edition.